(x^2+7x+1)/x+4=0

Simple and best practice solution for (x^2+7x+1)/x+4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+7x+1)/x+4=0 equation:



(x^2+7x+1)/x+4=0
Domain of the equation: x!=0
x∈R
We multiply all the terms by the denominator
(x^2+7x+1)+4*x=0
We add all the numbers together, and all the variables
4x+(x^2+7x+1)=0
We get rid of parentheses
x^2+4x+7x+1=0
We add all the numbers together, and all the variables
x^2+11x+1=0
a = 1; b = 11; c = +1;
Δ = b2-4ac
Δ = 112-4·1·1
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-3\sqrt{13}}{2*1}=\frac{-11-3\sqrt{13}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+3\sqrt{13}}{2*1}=\frac{-11+3\sqrt{13}}{2} $

See similar equations:

| p6=-5 | | 49=2x+35 | | (8x-12)+(2x+5)=180 | | 6x-4=2(3x-20 | | 2=-3/4x+8 | | 10x+7+x=180 | | 5x+210=540 | | y/5+13=28 | | Y=8+13(8)+x^2 | | 2b+8-5b=-13+8b-5 | | (x/4)-6=12 | | 14=y/4-14 | | 9y-y=40 | | 0.9m+-19.1=12.4 | | 64=3u+10 | | 2n5n=12 | | -7=5+u | | (0.5x)=(x-6) | | 5(2r+4)=100 | | -6y+34=-8(y-6) | | 6(-6+6n)-1=107 | | (2x)=(3x-3) | | 12+x/5=11 | | 5x+17=3x-33 | | x/3=10-15 | | 2.44-w=1.0 | | 3x-x=3+x | | 3t^2+13t+7=0 | | (X+7)=(3x-3) | | 3a-2/3+2a+3/2=a+7/6 | | -1/4x+6=2/3x=28 | | x+13=2x-21 |

Equations solver categories